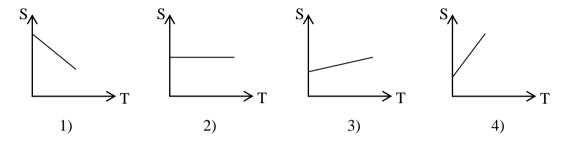


NALANDA V Nalanda Vidyalaya – Colombo 10 DA VIDYALAYA

NALANDA VIDYALAY Unit Test Project

NALANDA VIDYALAYA


Grade 11

Science

Unit: 03 - Mixtures

MCQ Questions

(1) Compound A is purified by recrystallization. Accordingly which is the most probable graph that illustrates the vibration of solubility (s) of compound A versus temperation (T).

(2) Example for a solid – solid heterogeneous mixtures are,

 $A \rightarrow brass$

 $B \rightarrow iron powder and KMnO_4$

 $C \rightarrow iron powder and sulphur$

 $D \rightarrow KMnO_4$ and water

- 1) A and B
- 2) B and C
- 3) C and D
- 4) B and D

Agaram.LK - Keep your dreams alive

- (3) If 25 ml is taken from 0.2 moldm⁻³ NaOH solution and added water to it until the volume becomes 50 ml, the concentration of that solution is,
 - 1) 0.1 moldm^{-3}
- 2) 0.2 moldm^{-3}
- 3) 0.3 moldm^{-3}
- 4) 0.4 moldm^{-3}
- (4) What is the substance that can be obtained by solvent extraction?
 - 1) Obtaining salt from sea water.
 - 2) Obtaining sugar from molasses.
 - 3) Separate substance in plants which have medicinal properties.
 - 4) All of the above.
- (5) If salts such as MgCl₂ is deposited on salts obtained from salterns.
 - 1) A bitter taste and a characteristic colour will occur.
 - 2) Salt becomes moisture and a characteristic colour will occur.
 - 3) Salt become bitter and moisture.
 - 4) Salt become bitter and dry.
- (6) The method of separating essential oil is,
 - 1) Steam distillation

2) Solvent extraction

3) Fractional distillation

4) Crystallization

(7)	The tea	chni	que used to separate the comp	onents of chlorophyll is			
(,)			ization	2) Solvent extraction			
	3) Dist			4) Chromatography			
(8)	Which of the following is the type of salt precipitates in large shallow tanks of saltern.						
	ĺ		n carbonate	2) Sodium chloride			
	3) Calo	ciun	n sulphate	4) Magnesium chloride			
(9)	Which	is t	he method used in refining cru	ide oil?			
	1) Frac	ction	al distillation	2) Steam distillation			
	3) Solv	vent	extraction	4) Crystallization			
(10)) Koholle dissolves in kerosene oil. This is because,						
	1) Botl	h ko	holle and kerosene oil are pol	ar states.			
	2) Botl	h ko	holle and kerosene oil are nor	polar states.			
	3) Koh	olle	is polar and kerosene oil is no	onpolar.			
	4) Koh	olle	is nonpolar and kerosene oil	is polar.			
			Structured	l Essay Questions			
(1)	A) i)	A	solution of 100 g is prepared	by dissolving a mass of 30 g of solid MgCl ₂ in pure			
		wa	vater at 25 °C.				
		a)	State the reason for selecting	water to prepare MgCl ₂ solution.			
		b)		the MgCl ₂ solution prepared above as a mass function			
		U)	(m/m).	the MgC12 solution prepared above as a mass function			
			(III/III).				
	ii)	a)	A small amount of MgCl ₂ w	as deposited at the bottom of the beaker, when another			
			$30g$ of $MgCl_2$ was added to	the MgCl ₂ solution prepared i) above stirred well and			
			kept for a short time. Wha	t is the special name used to introduce this type of			
			solution.				
		• .					
		b)		in a) above was heated upto a temperature of about 60			
			*C. State an important observ	vation that could be made here,			
		c)		the observation stated in b) above.			
		-)	r				

Agaram.LK - Keep your dreams alive!

B)	Th	ree instances relevant to separation of components from mixtures are given below.
		1) \rightarrow Separation of various minerals from mineral sand.
		$2) \rightarrow$ Separation of petroleum by the mineral oil.
		3) → Obtaining components in chlorophyll pigment.
	i)	Write the separation method used in the instances 1), 2) and 3) above, respectively.
	ii)	Calculate the mass of sodium hydroxide to prepare a 100cm ³ of 1.00 moldm ⁻³ sodium
		hydroxide solution. $(Na - 23, O - 16, H - 1)$

Essay Questions

- (1) Saline treatment is given to many patients treated in hospitals. A normal saline solution is prepared by dissolving 9g of sodium chloride in 1 dm³ of distilled water.
 - i) According to the "nature of the resulting saline solution" to what type of solution is it an example for?

Agaram.LK - Keep your dreams alive!

- ii) What is the reason for your answer.
- iii) State the composition of a normal saline solution with respect ti its mass and volume (m/v).
- iv) When preparing standard solution in the laboratory the composition of the solution are expressed as concentration.
 - a) Define the term "Concentration"
 - b) What is the amount of NaCl moles in the above saline solution, if its concentration is 0.15 moldm⁻³?
 - c) State one main purpose of using each instrument stated below, when preparing standard solutions in the laboratory.
 - i) Chemical balance
 - ii) Volumetric flask
 - iii) Glass funnel
 - iv) Wash bottle

(2) Given below are information as regards several mixtures prepared by a group of students.

Mixture	Method of preparation	
A	Adding some wheat flour to a test tube about half filled with water	
	and shaking thoroughly.	
В	Adding 1 – 2 drops of kerosene oil to a test tube half filled with water	
	and shaking thoroughly.	
С	Taking 30 cm ³ of liquid NaCl to a 100 cm ³ volumetric flask. Adding	
	water till the total volume was 100cm ³ .	
D	Dissolving 50g of CuSO ₄ in 150g of water completely.	
Е	Adding 15g of urea (CO(NH ₂) ₂) to a 500 cm ³ volumetric flask adding	
	water till the total volume was 500cm ³ .	

- i) Of the above mixture, give 2 examples for heterogeneous mixture.
- ii) What is the best method to express the composition of the mixture C, according to the data given in the table.

Agaram.LK - Keep your dreams alive!

- iii) What is the composition of the mixture D as a percentage by (m/m)
- iv) What is the amount of urea $[CO(NH_2)_2]$ used to prepare the solution E.

$$(C = 12, H = 1, N = 14, O = 16)$$

- v) What is the concentration of the solution E.
- vi) Name the instrument that should be used for the following.
 - a) To measure 30 cm³ of liquid NaCl accurately.
 - b) To transfer 15g of urea to the volumetric flask.