nalanda v Nalanda Vidyalaya - Colombo 10
 JA VIDYALAYA
 nalanda vidyalay Unit Test Project
 NALANDA VIDYALAYA

Grade 11

Unit : 03- Mixtures

MCQ Questions

(1) Compound A is purified by recrystallization. Accordingly which is the most probable graph that illustrates the vibration of solubility (s) of compound A versus temperation (T).

1)

2)

3)

4)
(2) Example for a solid - solid heterogeneous mixtures are,
A \rightarrow brass
$\mathrm{B} \rightarrow$ iron powder and KMnO_{4}
$\mathrm{C} \rightarrow$ iron powder and sulphur
$\mathrm{D} \rightarrow \mathrm{KMnO}_{4}$ and water

1) A and B
2) B and C
3) C and D
4) B and D
(3) If 25 ml is taken from 0.2 moldm $^{-3} \mathrm{NaOH}$ solution and added water to it until the volume becomes 50 ml , the concentration of that solution is,
5) $0.1 \mathrm{moldm}^{-3}$
6) $0.2 \mathrm{moldm}^{-3}$
7) $0.3 \mathrm{moldm}^{-3}$
8) $0.4 \mathrm{moldm}^{-3}$
(4) What is the substance that can be obtained by solvent extraction?
9) Obtaining salt from sea water.
10) Obtaining sugar from molasses.
11) Separate substance in plants which have medicinal properties.
12) All of the above.
(5) If salts such as MgCl_{2} is deposited on salts obtained from salterns.
13) A bitter taste and a characteristic colour will occur.
14) Salt becomes moisture and a characteristic colour will occur.
15) Salt become bitter and moisture
16) Salt become bitter and dry.
(6) The method of separating essential oil is,
17) Steam distillation
18) Solvent extraction
19) Fractional distillation
20) Crystallization
(7) The technique used to separate the components of chlorophyll is,
21) Crystallization
22) Solvent extraction
23) Distillation
24) Chromatography
(8) Which of the following is the type of salt precipitates in large shallow tanks of saltern.
25) Calcium carbonate
26) Sodium chloride
27) Calcium sulphate
28) Magnesium chloride
(9) Which is the method used in refining crude oil?
29) Fractional distillation
30) Steam distillation
31) Solvent extraction
32) Crystallization
(10) Koholle dissolves in kerosene oil. This is because,
33) Both koholle and kerosene oil are polar states.
34) Both koholle and kerosene oil are nonpolar states.
35) Koholle is polar and kerosene oil is nonpolar.
36) Koholle is nonpolar and kerosene oil is polar.

Structured Essay Questions

(1) A) i) A solution of 100 g is prepared by dissolving a mass of 30 g of solid MgCl_{2} in pure water at $25^{\circ} \mathrm{C}$.
a) State the reason for selecting water to prepare MgCl_{2} solution.
b) Calculate the composition of the MgCl_{2} solution prepared above as a mass function $(\mathrm{m} / \mathrm{m})$.
ii) a) A small amount of MgCl_{2} was deposited at the bottom of the beaker, when another 30 g of MgCl_{2} was added to the MgCl_{2} solution prepared i) above stirred well and kept for a short time. What is the special name used to introduce this type of solution.
b) The beaker with the solution in a) above was heated upto a temperature of about 60 ${ }^{\circ} \mathrm{C}$. State an important observation that could be made here,
c) Explain the reason relevant to the observation stated in b) above.
B) Three instances relevant to separation of components from mixtures are given below.

1) \rightarrow Separation of various minerals from mineral sand.
2) \rightarrow Separation of petroleum by the mineral oil.
3) \rightarrow Obtaining components in chlorophyll pigment.
i) Write the separation method used in the instances 1), 2) and 3) above, respectively.
\qquad
\qquad
\qquad
ii) Calculate the mass of sodium hydroxide to prepare a $100 \mathrm{~cm}^{3}$ of $1.00 \mathrm{moldm}^{-3}$ sodium hydroxide solution. ($\mathrm{Na}-23, \mathrm{O}-16, \mathrm{H}-1$)

Essay Questions

(1) Saline treatment is given to many patients treated in hospitals. A normal saline solution is prepared by dissolving 9 g of sodium chloride in $1 \mathrm{dm}^{3}$ of distilled water.
i) According to the "nature of the resulting saline solution" to what type of solution is it an example for?
ii) What is the reason for your answer.
iii) State the composition of a normal saline solution with respect ti its mass and volume (m / v).
iv) When preparing standard solution in the laboratory the composition of the solution are expressed as concentration.
a) Define the term "Concentration"
b) What is the amount of NaCl moles in the above saline solution, if its concentration is 0.15 moldm $^{-3}$?
c) State one main purpose of using each instrument stated below, when preparing standard solutions in the laboratory.
i) Chemical balance
ii) Volumetric flask
iii) Glass funnel
iv) Wash bottle
(2) Given below are information as regards several mixtures prepared by a group of students.

Mixture	Method of preparation
A	Adding some wheat flour to a test tube about half filled with water and shaking thoroughly.
B	Adding $1-2$ drops of kerosene oil to a test tube half filled with water and shaking thoroughly.
C	Taking $30 \mathrm{~cm}^{3}$ of liquid NaCl to a $100 \mathrm{~cm}^{3}$ volumetric flask. Adding water till the total volume was $100 \mathrm{~cm}^{3}$.
D	Dissolving 50 g of $\mathrm{CuSO} \mathrm{Cu}_{4}$ in 150 g of water completely.
E	Adding 15 g of urea $\left(\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right)$ to a $500 \mathrm{~cm}^{3}$ volumetric flask adding water till the total volume was $500 \mathrm{~cm}^{3}$.

i) Of the above mixture, give 2 examples for heterogeneous mixture.
ii) What is the best method to express the composition of the mixture C , according to the data given in the table.
iii) What is the composition of the mixture D as a percentage by $(\mathrm{m} / \mathrm{m})$
iv) What is the amount of urea $\left[\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right]$ used to prepare the solution E .
$(\mathrm{C}=12, \quad \mathrm{H}=1, \quad \mathrm{~N}=14, \quad \mathrm{O}=16)$
v) What is the concentration of the solution E .
vi) Name the instrument that should be used for the following.
a) To measure $30 \mathrm{~cm}^{3}$ of liquid NaCl accurately.
b) To transfer 15 g of urea to the volumetric flask.

