

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் ூரண்டாம் தவணைப் பரீட்சை - 2022

Conducted by Field Work Centre, Thondaimanaru.

FWC

2nd Term Examination - 2022

One hour

Gr -12 (2023)

இரசாயனவியல்	I	
Chemistry	I	

Part - I

- **❖** Answer all questions.
- 01) Consider the following statements I and II
 - I. The shapes of molecules with transition elements as the central atom
 - II. Radioactive materials produce three types of emissions α , β , and γ

The two scientists who proposed related as given by statements I and II respectively are,

- (1) J. J. Thompson and Henri Becquerel
- (2) Hendrick Lawrence and Ernest Rutherford
- (3) Ronald Nyholm and Ernest Rutherford
- (4) Eugine Goldstein and Henry Becquerel
- (5) Lewis and Ernest Rutherford
- 02) The maximum number of electron pairs of chromium (Cr, z=24) That are associated with n=2, $m_l=0$ are,
 - (1) 8, 12
- (2) 8, 13
- (3) 10, 3
- (4) 5, 4
- (5)4,6

- 03) The correct increasing order of ionic radius of $Li^+, Mg^{2+}, Al^{3+}, N^{3-}, S^{2-}$ is
 - (1) $Li^+ < Mg^{2+} < Al^{3+} < N^{3-} < S^{2-}$
 - (2) $Al^{3+} < Mg^{2+} < Li^+ < S^{2-} < N^{3-}$
 - (3) $Ma^{2+} < N^{3-} < Li^+ < S^{2-} < Al^{3+}$
 - (4) $Al^{3+} < Li^+ < Mg^{2+} < N^{3-} < S^{2-}$
 - (5) $Li^+ < Al^{3+} < Mq^{2+} < N^{3-} < S^{2-}$
- 04) The number of resonance structures that can be drawn for the molecule N_2O_3 (O-N-O-N-O) with positive charge on the most electronegative Oxygen atom is,
 - (1) 2
- (2)4
- (3) 6
- (4) 8
- (5)9
- 05) (A) BCl_3 , (B) PCl_3 , (C) PCl_5 (D) SO_3 (E) SO_2 The molecule / molecules which shows the bond angle 120° ?
 - (1) Only A and B
- (2) Only A and D
- (3) Only A, B and D

- (4) Only A, C and D
- (5) Only A, B, D and E

06)
$$CH_3 CH_2 OH \xrightarrow{H^+ / KMnO_4} CH_3COOH$$

Ethanol reacts with acidified KMnO₄ to give Acetic acid. Which of the following statement is incorrect regarding above reaction?

- (1) Carbon is Oxidized.
- (2) Intermolecular interaction is higher in acetic acid than ethanol.
- (3) Two Oxygen atoms in acetic acid exhibit different VSEPR pairs.
- (4) Oxidation and Reduction both are takesplace in the above reaction.
- (5) Only H bond and dipole dipole in teractions are present between the Acetic acid Molecules
- 07) When a mass of 1.43g of Na_2CO_3 . $10H_2O$ is dissolved in 50ml, $0.1moldm^{-3}Na_2SO_4$ and 25ml, $0.2 moldm^{-3} Na_3 PO_4$ solution. The Na^+ composition of the resulting solution in ppm is $(1ppm = 1mgdm^{-3})$ (C = 12, O = 16, Na = 23)
 - (1)400
- (2)4600
- (4) 10733
- (5) 11500
- 08) A gaseous mixture contains only x and y gases. The mass fraction of y is $\frac{2}{7}$ molarmass of x is five times that of molarmass of y. The correct mole fraction of x is?
 - $(1) \frac{5}{7}$

- (2) $\frac{2}{3}$
- (3) $\frac{1}{3}$ (4) $\frac{1}{5}$
- $(5)^{\frac{4}{5}}$

- 09) Which of the following statement is correct regarding gases?
 - (1) Gases mix evenly and completely without any mechanical aid.
 - (2) Gas can be liquify when only given pressure
 - (3) For an ideal gas at constant temperature, Pressure inversely proportion for volume.
 - (4) Under the same conditions of temperature and Pressure, equal volume of ideal gases do not not contain equal number of moles.
 - (5) At high pressure, high temperature conditions real gas behave as ideal.
- 10) Which of the following has the highest solubility in water?
 - (1) BaSO₄
- (2) $BaCO_3$
- (3) $MgSO_{\Delta}$
- $(4) MgCO_3$
- $(5) Mg(OH)_2$

- 11) Which of the following is the stable oxy acid?
 - (1) H_2SO_3
- (2) H_3PO_4
- (3) HNO₂
- (4) H_2CO_3 (5) $H_2S_2O_3$
- 12) Which of the following statement is incorrect regarding catalysts?
 - (1) V_2O_5 is used for oxidation of SO_2 to SO_3
 - (2) $TiCl_3/Al(C_2H_5)_6$ is used for the polymerization of ethene.
 - (3) Pd is used for hydrogenation
 - (4) MnO_2 is used to decompose H_2O_2
 - (5) Pt / Rh is used for oxidation of ammonia to Nitrogen

13) The correct enthalpy change when propene gas ignited is

$$[CH_3CH = CH_2 \rightarrow \text{propene}]$$

Bond dissociation

$$C - C \Rightarrow 348 k J mol^{-1}$$

 $0 = 0 \Rightarrow 495 k I mol^{-1}$

$$C = C \Rightarrow 614kJmol^{-1}$$

 $C = 0 \Rightarrow 1072k [mol^{-1}]$

$$C-H \Rightarrow 413 \text{kImol}^{-1}$$

 $0-H \Rightarrow 463$ k[mol⁻¹

$$(1) + 1067.5 k J mol^{-1}$$

- $(2) 8142.5 k J mol^{-1}$
- $(3) -1067.5 k I mol^{-1}$

$$(4) +3542.5 k J mol^{-1}$$

- $(5) -3542.5 k J mol^{-1}$
- 14) The correct reaction relevant to the standard enthalpy of atomization of chlorine is?
 - $(1) Cl_{2(g)} \longrightarrow 2Cl_{(s)}$
 - $(2) \ Cl_{2(g)} \longrightarrow 2Cl_{(g)}$
 - $(3) \xrightarrow{\frac{1}{2}} Cl_{2(g)} \longrightarrow Cl_{(g)}$
 - $(4) \ HCl_{(g)} \longrightarrow H_{(g)} + Cl_{(g)}$
 - $(5) \xrightarrow{\frac{1}{2}} Cl_{2(g)} \longrightarrow Cl_{(g)}^{+} + e$
- 15) The mean square speed of a gas at temperature $27^{\circ}C$ is $200ms^{-1}$, At which temperature its mean square speed reaches $300ms^{-1}$
 - (1)450

- (2)350
- (3) 177
- (4)723
- (5) 167
- 16) Which of the following statements is / are correct regarding H_2O , NH_3 and CH_4
 - a) Electron pair geometry of the above molecules are same
 - b) Decreasing order of bond angle is CH_4 , H_2O , and NH_3
 - c) All the above molecules are polar compounds
 - d) The central atoms of CH_4 , H_2O and NH_3 Consist lone pair electrons.
- 17) Which of the following statements is / are correct regarding 3d block Elements
 - a) Oxides MnO_2 and CrO_2 show amphoteric properties
 - b) The highest oxidation states gradually increasing from Sc to Mn.
 - c) Among these elements Cu has the highest 2^{nd} ionization energy.
 - d) An aqueous solution of cobalt, when treated with excess NH_3 gives a yellow brown precipitate
- 18) Which of the following statements is / are correct regarding gases.
 - a) Molar mass of an ideal gas can be calculated by using an ideal gas equation.
 - b) In vander waal's equation the correction of pressure factor directly proportion to density of gas
 - c) A gas cannot be liquified at critical Temperature.
 - d) The existence of three states of matter can be regarded as a result of balance between inter particle forces and the thermal energy of the particles .

- 19) Which of the following statements is / are correct regarding entropy.
 - a) The spontaneity of a system of constant entropy can be determined by ΔH .
 - b) In an isolated system when entropy increases spontaneity will be change
 - c) There is no effect in entropy when physical and chemical changes
 - d) The unit of ΔS is given by $kJmol^{-1}$
- 20) Which of the following gives $N_{2(g)}$ as a product to their thermal decomposition
 - a) NH_4Br

Agaram.LK - Keep your dreams alive!

- b) NH_4NO_2
- c) $(NH_4)_2 Cr_2 O_7$
- d) NH_4NO_3

\Leftrightarrow Instructions for questions 21 - 25.

Response	First statement	Second statement
1)	True	True and correctly explains the first statement.
2)	True	True, but not explain the first statement correctly
3)	True	False
4)	False	True
5)	False	False

Statement I	Statement II
21) Electron affinity of Nitrogen is higher than	Three unpaired electrons m present in both
phosporous	nitrogen and phosporous
22) Oxidation number describes the interchange of	Oxidation number of an atom in a chemical
electrons from an atom in a chemical	compound cannot be zero
compound .	1111.IK
23) When $Cl_{2(g)}$ reacted with $NaOH_{(aq)}$ gives	All the halogens undergo disproportion reaction
$NaCl_{(aq)}$, $NaClO_{3(aq)}$ at room temperature	with $NaOH_{(aq)}$
24) At a constant temperature and pressure, nT	In a fixed amount of the gas at constant
product is a constant for a given gas sample	temperature, pressure inversely proportional to its
	volume
25) H bonds do not exhibit in NaOH aqueous	O-H group in $NaOH$ forms hydrogen bond
solution	with water

(

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் இரண்டாம் தவணைப் பரீட்சை - 2022 Conducted by Field Work Centre, Thondaimanaru.

2nd Term Examination - 2022

F	W	C	

இரசாயனவியல் II A Chemistry II A

Gr -12 (2023)

02	$egin{bmatrix} \mathbf{E} \end{bmatrix}$	IIA
----	--	-----

Structure essay Questions Answer all questions

- 1) a) Arrange the following in the increasing order of the property indicated in parenthesis.
 - (i) H, N, S, Cl (Electronegativity)
 - (ii) HF, HCl, HI, HBr (Boiling Point)
 - (iii) I₂, ICl, Cl₂ (Strength of intermolecular interaction)
 - (iv) Li, Na, Be, Mg (Second ionization Energy)
 - (v) Na₂CO₃, (NH₄)₂CO₃, SrCO₃, BeCO₃
 (Decomposition Temperature)
 - $(vi) \quad \operatorname{Cl}_2\operatorname{O}_7, \operatorname{Mn}_2\operatorname{O}_7, \operatorname{Cl}_2\operatorname{O}, \operatorname{CrO}_3 \text{ (Acidity)}$

b)

Agaram.LK - Keep your dreams alive!

i) Draw the most acceptable Lewis structure for methyl Nitrite. The skeleton is given below.

ii) Draw two resonance structures for this molecule Indicate their stability.

••••		•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	••••••	•••••••		••••••	••••••	•••••	••••••	••••••	••••••
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••

iii)Based on the stable structure above (ii), complete the chart.

$$\begin{array}{c|c} H & & \\ | & \\ H - C_1 - O_2 - N_3 - O_4 \\ | & \\ H \end{array}$$

		C_1	02	N_3	04
I.	VSEPR Pairs.				
II.	Electron pair Geometry				
III.	Shape				
IV.	Hybridization				

iv) Identify the atomic/ hybrid orbitals involved in the formation of the following σ bonds in the stable Lewis structure of (ii) above.

I. $H - C_1$.

Н

 \mathcal{C}_1

II. $C_1 - O_2$

 C_1

O₂

III. O2 - N3

O₂

N₃

IV. N₃ - O₄

N₃

O₄

v) Identify the atomic orbitals involved in the formation of the following π bonds in given structure

 $N_3 - O_4$

N₃

O₄

vi) State the approximate bond angles around C₁, O₂ and N₃

C₁

 O_2

N₃

c) Consider the following chemical species.

 H_2O , Na^+ , O_2 , CCl_4 , Cl^-

Indicate one species for each interaction given below.

- I. Hydrogen bond:
- II. Vander Waals Interaction:
- III. Dipole induced Dipole interaction:
- IV. I on induced dipole interaction:
- V. Ion dipole interaction:

2) a)	X is a non transition element. It is the 3 rd most natural abundant element in earth crust Some chemical
	properties of Element X is given below.
	• It reacts with acid and base liberates the same colourless, odourless diatomic gas.
	• It forms incomplete octet compound.
i)	Identify the element X.
ii)	Give the most stable positive oxidation state of X
iii)	Give the electronic configuration for stable ion of X .
iv)	Give the balanced chemical equation for element X with (1) HCl (2) $NaOH$
v)	Explain why this element is non reactive with air.
vi)	Give the possible chemical formula of cations be present in aqueous solution of ion X write their IUPAC Name.
vii)	Addition of $OH_{(aq)}^-$ drop wisely to the aqueous solution of ion X, write the observations obtained?

viii) Give balanced chemical equations for the above observation.
ix) Write a dimer compound of X in gaseous phase.
x) Give one use of element X.
x) Give one use of element A.
b) Write down the balanced chemical equation for the followings.
I. $\text{LiNO}_3 \longrightarrow \triangle$
II. $KNO_3 \longrightarrow$
III. MgCO ₃
Δ
IV. NaHCO ₃
V. $(NH_4)_2 Cr_2O_7 \longrightarrow$
a) Give suitable equations for the followings.i) Standard enthalpy of formation MgCl (s)
1) Dundard Champy of Formation 1915-1(a)
ii) Standard enthalpy of atomization Mg(s)
iii) Standard enthalpy of Lattice dissociation of NaCl (s)
iv) Standard enthalpy of combustion C ₃ H ₈ (g)
v) Standard enthalpy of vaporization of Br _{2(l)}
v) building of vaporization of 212(i)

Give one compour 1	for each description siver	halory One molecule contains two elements and
Shape	Dipole moment	below. One molecule contains two elements only. Example
Shape Linear	Dipole moment No	
Shape Linear Square planar	Dipole moment No No	below. One molecule contains two elements only. Example
Shape Linear Square planar Square pyramid	Dipole moment No No Yes	Example
Shape Linear Square planar Square pyramid Angular	Dipole moment No No	Example
Shape Linear Square planar Square pyramid	Dipole moment No No Yes Yes	Example

Agaram.LK - Keep your dreams alive!

ts empirical formula? The proposed first that radiation shows wave and particle like character? Trite the equation for wavelength λ related with mass m and velocity V of particle.
rite the equation for wavelength λ related with mass m and velocity V of particle .
eleased or emitted energy of a particle is given by $E = \frac{hc}{\lambda}$
nergy of tiny particles indicated by $E = mc^2$ Using these two equations, derive a suit quation indicated 4 - $C(ii)$
That is the wavelength of a particle with mass 2×10^{-24} g travelling at 1×10^8 ms ⁻¹ s ₁
$a = 6.626 \times 10^{-34} Js$
n 1

Grade - 12(2023) 2nd term FWC - 2022

_agaram.lk

Agaram.LK - Keep your dreams alive!

(All Rights Reserved/ முழுப்பதிப்புரிமை உடையது)

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் இரண்டாம் தவணைப் பரீட்சை - 2022 Conducted by Field Work Centre, Thondaimanaru. 2nd Term Examination - 2022

இரசாயனவியல் II B Chemistry II B

Gr -12 (2023)

02

E

IIB

Agaram.LK - Keep your dreams alive

Part - IIB

- **❖** Answer any two questions from this section.
- 05) A) i) Write down the ideal gas equation.
 - ii) Give five assumptions of the molecular kinetic Theorgy of an ideal gas.
 - iii) When N number of molecules in a constant volume container at constant temperature travel with different speeds of $C_1, C_2 \dots C_N$ write the equation for Average speed, Mean square speed, Root mean square speed.
 - iv) Write down the molecular kinetic Equation.
 - v) Using the molecular kinetic equation, then Derive $\sqrt{\overline{C^2}} = \sqrt{\frac{3RT}{M}}$
 - B) A container with volume Vm^3 contains 2g of pure A gas at $2 \times 10^5 Nm^{-2}$ pressure at $27^o c$. Another same volume Vm^3 vacuum container connected with the system. Then the system was heated to $127^o c$ At this temperature, 6g of pure gas B wan inserted into the system until the pressure became $4 \times 10^5 Nm^{-2}$ Find the molecular mass ratio between gas A and gas B.
- 06) A) A crystalline salt $Cu_2S.xH_2O$ reacted with acidified $KMnO_{4(aq)}$ and gives $Cu_{(aq)}^{2+}, Mn_{(aq)}^{2+}, SO_{2(g)}$ 1.335g of the hydrated salt reacted with $0.2moldm^{-3}$ acidified $KMnO_4$ The required volume of $KMnO_4$ solution was $40.00cm^3$. (Cu=63.5, S=32)
 - i) Oxidation half ionic equation.
 - ii) Reduction half ionic equation.
 - iii) Oxidation Reduction ionic equation.
 - iv) Calculate the mass of Cu_2S in hydrated salt.
 - v) Find the value of x
 - B) i) Nitrogen is an innert gas. Briefly explain your answer.
 - ii) Nitrogen takes the oxidation states from -3 to +5 Given Examples for each oxidation states.
 - iii) Give balanced chemical equations as NH_3 act as.
 - a) Oxidizing agent
 - b) Reducing agent
 - c) Acid
 - The melting point of Mg is greater than that of Na Explain your answer.

07) A) Consider the following reaction.

$$Fe_2O_{3(s)} + 3H_{2(g)} \rightarrow 2Fe_{(s)} + 3H_2O_{(g)}$$

Using the following thermochemical data at $25^{\circ}c$.

	$Fe_2O_{3(s)}$	$H_{2(g)}$	$Fe_{(s)}$	$H_2O_{(g)}$
Standard enthalpy of formation (<i>KJmol</i> ⁻¹)	-822	0	0	-242
Standard entropy $(KJK^{-1}mol^{-1})$	0.090	0.131	0.027	0.189

- i) Calculate the ΔH^{θ} for the above reaction at $25^{\circ}c$
- ii) Calculate the ΔS^{θ} for the above reaction at $25^{\circ}c$.
- iii) 1. Write the relationship ΔG^{θ} for the reaction with ΔH^{θ} and ΔS^{θ}
 - 2. Calculate the ΔG^{θ} at $25^{\circ}c$, state the spontaneity of the reaction.
- B) P is an S-block Element in the periodic table P gives red colour in flame test. Its ionization energy is highest among the same group elements. Element P reacts with water gives a solution and gas Q. Evaporation of this solution produce a metal oxide. Element P reacts with $N_{2(g)}$ and also $H_{2(g)}$ given compounds R and basic compound S respectively compound R treated with water given gas T which change Red litmus to blue colour
 - i) Identify P, Q,R,S,T

- ii) Give the balanced chemical equations involved above
- C) Construct a Born Haber cycle for standard Lattice dissociation for $KBr_{(s)}$

