தொண்லைபாயாறு வெளிக்கள நிலையப்் நடாத்தும் முதலாi் தவணைப் பரீட்சை - 2022
 Conducted by Field Work Centre, Thondaimanaru. $1^{\text {st }}$ Term Examination - 2022

Part - I

* Answer all questions.

1) Which of the following combinations is correct.
1. Cathode ray experiment

- Pauli

2. Gold foil experiment

- J. J. Thomson

3. The number of positive charges on the nucleus increases in atom by single electron units
4. Small particles under appropriate conditions show wave properties

- Max plank

5. Positive ray experiment

- Dalton

2) Maximum number of electrons possible to have for the quantum number $\mathrm{n}=3$ and $m_{s}=-\frac{1}{2}$ is,
1. 3
2. 4
3. 5
4. 7
5. 9
3) The correct increasing order of ionic radius is $\mathrm{O}^{2-}, \mathrm{N}^{3-}, \mathrm{I}^{-}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}$
1. $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{O}^{2-}<\mathrm{N}^{3-}<\mathrm{I}^{-}$
2. $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{O}^{2-}<\mathrm{N}^{3-}<\mathrm{I}^{-}$
3. $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{I}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$
4. $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{O}^{2-}<\mathrm{I}^{-}<\mathrm{N}^{3-}$
5. $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{O}^{2-}<\mathrm{I}^{-}<\mathrm{N}^{3-}$
4) The density of an aqueous basic solution at $25^{\circ} \mathrm{C}$ is $2 \mathrm{kgdm}^{-3}$. If the OH^{-}concentration is 0.05 moldm $^{-3}$ its OH^{-}concentration in ppm would be, $[\mathrm{H}-1, \mathrm{O}-16]$
1. 520
2. 340
3. 425
4. 850
5. 85
5) Which is the correct decreasing order of electron negativity of nitrogen of the following $\mathrm{NO}_{2} \mathrm{Cl}$, $\mathrm{NOCl}, \mathrm{CF}_{3} \mathrm{NC}, \mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$.
1. $\mathrm{CF}_{3} \mathrm{NC}>\mathrm{NO}_{2} \mathrm{Cl}>\mathrm{NH}_{4}^{+}>\mathrm{NOCl}>\mathrm{NH}_{3}$
2. $\mathrm{CF}_{3} \mathrm{NC}>\mathrm{NO}_{2} \mathrm{Cl}>\mathrm{NOCl}>\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}$
3. $\mathrm{NH}_{4}^{+}>\mathrm{NO}_{2} \mathrm{Cl}>\mathrm{NOCl}>\mathrm{NH}_{3}>\mathrm{CF}_{3} \mathrm{NC}$
4. $\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}>\mathrm{NOCl}>\mathrm{NO}_{2} \mathrm{Cl}>\mathrm{CF}_{3} \mathrm{NC}$
5. $\mathrm{NH}_{4}^{+}>\mathrm{CF}_{3} \mathrm{NC}>\mathrm{NO}_{2} \mathrm{Cl}>\mathrm{NOCl}>\mathrm{NH}_{3}$
6) 5 mol of N_{2} gas and 9 mol of H_{2} gas were mixed in a sealed container and allowed to react certain temperature. What is the diagram showing the changing mole of the NH_{3} gas that forms with the reaction mole of N_{2} gas?

2.

3.

7) Which of the following compounds has the lowest volatility?

1. $\mathrm{CH}_{3} \mathrm{Cl}$
2. CHBr_{3}
3. CH_{4}
4. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
5. CBr_{4}
8) An organic compound containing C, H, and O only has 29.6 \% oxygen by mass. Its relative molecular mass is 270 . How many oxygen atoms are present in a molecule of this organic compound?
[$\mathrm{H}-1, \mathrm{C}-12, \mathrm{O}-16]$
1. 5
2. 4
3. 3
4. 2
5. 1
9) Most acceptable Lewi's structure of N_{3}^{-}ion
1. $: \ddot{\mathrm{N}}=\stackrel{(+)}{\mathrm{N}}=\ddot{\mathrm{N}}:^{(-)}$
2.

$$
{ }^{(-)}: \ddot{\mathrm{N}}=\stackrel{(+)}{\mathrm{N}}=\ddot{\mathrm{N}}:^{(-)}
$$

2. $\quad \stackrel{(2-)}{:(\ddot{N}}-\stackrel{(+)}{\mathrm{N}} \equiv \mathrm{N}:$
3.

${ }^{(-)}: \ddot{\mathrm{N}}=\mathrm{N} \equiv \mathrm{N}$:
10) In which one of the following atoms will the first ionization energy be the highest?

1. Mg
2. F
3. Ar
4. Li
5. Ca
11) A mixture of NaCl and KCl weighed $m_{1} g$. The sample was dissolved in water and treated with excess of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$. The resulting AgCl weighed Mg . Mass of NaCl in mixture is [Molar mass of $\mathrm{AgCl}, \mathrm{NaCl}$ and KCl respectively $\mathrm{M}_{\mathrm{x}}, \mathrm{M}_{\mathrm{y}}, \mathrm{M}_{\mathrm{z}}$]
1. $\left[\frac{M}{M_{x}}-\frac{m_{1}}{M_{y}}\right] M_{x} M_{y}$
2. $\left[\frac{M}{M_{x}}-\frac{m_{1}}{M_{y}}\right] \frac{M_{x} M_{y}}{M_{z}}$
3. $\left[\frac{M}{M_{x}}-\frac{m_{1}}{M_{z}}\right] \frac{M_{y} M_{z}}{\left(M_{z}-M_{y}\right)}$
4. $\left[\frac{m_{1}}{M_{x}}-\frac{M}{M_{z}}\right] \frac{M_{y} M_{z}}{\left(M_{z}-M_{y}\right)}$
5. $\left[\frac{M}{M_{x}}-\frac{m_{1}}{M_{y}}\right] \frac{M_{y} M_{z}}{\left(M_{z}-M_{y}\right)}$
12) The correct answer when the molecules $\mathrm{N}_{2}, \mathrm{NH}_{3}, \mathrm{NH}_{2} \mathrm{OH}, \mathrm{NO}, \mathrm{NO}_{2}$, and HNO_{3} are arranged in the decreasing order of the oxidation state of nitrogen (N) is,
1. $\mathrm{HNO}_{3}>\mathrm{NO}_{2}>\mathrm{NO}>\mathrm{N}_{2}>\mathrm{NH}_{3}>\mathrm{NH}_{2} \mathrm{OH}$
2. $\mathrm{NO}_{2}>\mathrm{HNO}_{3}>\mathrm{NO}>\mathrm{N}_{2}>\mathrm{NH}_{3}>\mathrm{NH}_{2} \mathrm{OH}$
3. $\mathrm{NH}_{2} \mathrm{OH}>\mathrm{NH}_{3}>\mathrm{N}_{2}>\mathrm{NO}>\mathrm{NO}_{2}>\mathrm{HNO}_{3}$
4. $\mathrm{NH}_{3}>\mathrm{NH}_{2} \mathrm{OH}>\mathrm{N}_{2}>\mathrm{NO}>\mathrm{NO}_{2}>\mathrm{HNO}_{3}$
5. $\mathrm{HNO}_{3}>\mathrm{NO}_{2}>\mathrm{NO}>\mathrm{N}_{2}>\mathrm{NH}_{2} \mathrm{OH}>\mathrm{NH}_{3}$
13) Identify the correct statement from the following
1. Among the electronic transitions $n=2 \rightarrow n=1, n=\infty \rightarrow n=2$ and $n=6 \rightarrow n=1$ in a hydrogen atom most energy is release in $\mathrm{n}=\infty \rightarrow \mathrm{n}=2$.
2. The only type of inter molecular force present in CO_{2} in the solid phase is dipole - dipole forces
3. The shape of the HNO_{3} is trigonal bipyramidal
4. The $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle of NO_{2} is greater than that of NO_{2}^{-}.
5. The addition of an electron to a gaseous berilium (Be) atom is an exothermic process whereas for a gaseous nitrogen atom it is endothermic
14) The number of moles of KMnO_{4} that are required to react completely with one mole of FeI_{2} in acidic medium is,
1. $\frac{2}{5}$
2. $\frac{3}{5}$
3. $\frac{1}{5}$
4. 1
5. $\frac{4}{5}$
15) Select the correct statement with regard to particles associated with positive rays observed in a cathode ray tube
1. The particles are uncharged.
2. They travel from cathode to anode along straight lines
3. Their charge to mass ratio e / m depends on the nature of gas inside the cathode ray tube.
4. Their direction of travel is not affected by magnetic and electric fields
5. They are not capable of ionizing the gas inside the cathode ray tube

* For each of the question 16 to 20 one or more response out of four responses (a), (b), (c) and (d) given is / are correct. Select the correct response / responses. In accordance with the instruction given on your answer sheet mark.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Only (a) (b) are correct	Only (b) (c) are correct	Only (c) (d) are correct	Only (a) (d) are correct	The other numbers correct

16) Which of the following statements is / are correct
a) In a molecule if one atom is SP hybridized It will definitely have π bond.
b) Concept of hybridization is applied to only one atom.
c) The number of atomic orbitals that participate in the hybridization
d) Hybrid orbitals have clear identify
17) Which of the following statements is / are incorrect?
a) Hydrogen bond is formed only when there are $\mathrm{H}-\mathrm{F}, \mathrm{H}-\mathrm{O}, \mathrm{H}-\mathrm{N}$ bonds in a molecule
b) Oxidation number of oxygen in OF_{2} is +2
c) electromagnetic radiations are not affected by electric fields.
d) When the momentum of a matter increases it's wave length also increases.
18) Which of the following statements is / are true regarding the molecule given below?

$$
\underset{\mathrm{P}}{\mathrm{H}_{2} \mathrm{C}}=\underset{\mathrm{Q}}{\mathrm{CH}}-\underset{\mathrm{R}}{\mathrm{CH}}-\underset{\mathrm{S}}{\mathrm{C}} \equiv \underset{\mathrm{~T}}{\mathrm{C}}-\mathrm{H}
$$

a) Atoms labelled $\mathrm{Q}, \mathrm{R}, \mathrm{S}$ and T lie on a straight line.
b) All carbon atoms lie in the same plane.
c) Between C_{S} and C_{T} there is one σ bond and two π bonds.
d) The angle between $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{Q}}$ and $\mathrm{C}_{\mathrm{Q}}-\mathrm{H}$ bonds is approximately 120°.
19) $18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ was dissolved in $180 \mathrm{~cm}^{3}$ of water which of the following statement / s is / are. correct regarding the above procedure. [water density is $1 \mathrm{gcm}^{-3}$] $\mathrm{C}-12, \mathrm{H}-1, \mathrm{O}-16$
a) Molar concentration of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in solution is 0.1 moldm $^{-3}$
b) Mass fraction of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in solution is 0.091
c) Mole fraction of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in solution is $\frac{1}{101}$
d) Percentage by mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in solution is 91%
20) Which of the following statement / s is / are true?
a) Electrons have particle as well as wave properties.
b) A proton is heavier than a neutron
c) All atoms have electrons, protons and neutrons
d) All ions have at least one proton.

Instructions for questions $21 \mathbf{- 2 5}$.

Response	First statement	Second statement
1$)$	True	True and correctly explains the first statement.
2$)$	True	True, but not explain the first statement correctly
3$)$	True	False
4$)$	False	True
5$)$	False	False

தொண்லைபாணாறு வெளிக்கள நிலையம் நடாத்தும் முதலாi் தவணைப் ufீட்சை - 2022
 Conducted by Field Work Centre, Thondaimanaru. $1^{\text {st }}$ Term Examination - 2022

Structure essay Questions

Answer all questions

1) (a) To the following questions, write the answer in the given empty space

(i)	Among there elements $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, Which on has the highest electron gain enthalpy in $\left(\mathrm{kJmol}^{-1}\right)$	
(ii)	Among the molecules $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$ and XeO_{3} which on has the highest bond angle.	
(iii)	Among O, Cl, and P Which one has the lowerst first ionization energy	
(iv)	Among $\mathrm{MgCO}_{3}, \mathrm{CaCO}_{3}$ and SrCO_{3} which one has the lowerst polarization ability	
(v)	Among $\mathrm{HClO}_{4}, \mathrm{Cl}_{2} \mathrm{O}_{3}$ and $\mathrm{Cl}_{2} \mathrm{O}$ which one has the highest oxidation state in Cl atom	
(vi)	Among $\mathrm{SF}_{6}, \mathrm{CCl}_{4}, \mathrm{BCl}_{3}$ which compound has the highest eleotron pair repulsion units in central atom	

(b)(i) Draw the most acceptable Lewis structure for the molecular skeleton given below

(ii) Write the possible three resonance structures for the above molecule and state the relative stability of that resonance structures (Except given in b(i))
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Complete the given table based on the Lewis dot - dash structure and its labeled molecule given below.

		O^{1}	$\mathrm{~N}^{2}$	C^{3}	C^{5}
I.	VSEPR Pairs				
II.	Electron pair geometry.				
III.	Molecular shape				
IV.	Hybridization				

(iv) Identify the atomic / hybride orbitals involved in the formation of σ bond in the above Lewis dot dash structure
I. $0^{1}-N^{2}$
0^{1}
N^{2}
II. $N^{2}-C^{3}$
III. $C^{3}-C^{5}$
N^{2}
C^{3}
C^{5}
(v) Identify the atomic orbitals in the formation of the π bond in the Lewis dot - dash structure give in part (iii) above
$C^{3}-C^{4}$
C^{3}
C^{4}
(c)(i) Complete the following table.

	Species	Primary interaction	Secondary interaction
(1)	$\mathrm{CH}_{4(\mathrm{~g})}$. $1 . .1$...............................
(2)	$\mathrm{NaCl}_{(s)}$
(3)	Mg
(4)	C (Diamond)		..
(5)	$\mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{aq})}$..

(ii) Mention the affroximate bond angle of the central atom in the following molecules.

1. $\mathrm{XeF}_{4}:$
2. PCl_{5}
SO_{2} :-
2) (a) An inorganic salt contain Cr, S, and O only. $\mathrm{Cr} 26.52 \%, \mathrm{~S} 24.53 \%, \mathrm{O} 48.96 \%$ are the mass percentage of the elements Cr, S and O respectively.
($\mathrm{Cr}=52, \mathrm{~S}=32, \mathrm{O}=16$)
(i) Write the empirical formula of the salt X ?
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Write the chemical formula of the salt X .
\qquad
\qquad
\qquad
(iii) Write the IUPAC Names of the following compounds.
1. $\mathrm{H}_{2} \mathrm{~S}$
2. HClO_{4}
3. $\mathrm{KH}_{2} \mathrm{PO}_{4}$
4. $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
(b) (i) Write oxidation and reduction half ionic reaction and then write complete ionic - equation for the reaction $\mathrm{Fe}_{(a q)}^{2+}+\mathrm{NO}_{3(a q)}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{(a q)}^{3+}+\mathrm{NO}_{(g)}+\mathrm{OH}^{-}$in basic medium.
(ii) $S_{(s)}+\mathrm{HNO}_{3(a q)} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4(a q)}+\mathrm{NO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ Balance this reaction by oxidation number method.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) $\mathrm{C}_{3} \mathrm{H}_{8(g)}+\mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ Balance this equation using inspection method.
(c) A solution contain acidic KMnO_{4} Volume of that is $100 \mathrm{~cm}^{3} .0 .1$ moldm ${ }^{-3} 50 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}_{2}$ solution was added to it and shaken well. After that 0.1 moldm ${ }^{-3} 50 \mathrm{~cm}^{3} \mathrm{Na}_{2} \mathrm{SO}_{3}$ solation was needed to completely react with remaining KMnO_{4} solution
(i) Write balance chemical reactions for the above reactions.
\qquad
\qquad
\qquad
\qquad
(ii) What is the concentration of KMnO_{4} in the solution?
\qquad
\qquad
\qquad
3) (a) A,B and C are three successive elements belongs to periodic table, Which atomic numbers are less than 20. Ascending order of the boiling point of this elements as follows $\mathrm{A}<\mathrm{B}<\mathrm{C}$. Common variation of first and second lionization emergies are given in the following table. Consider this to answer the following questions.

Element	A	B	C
$1^{\text {st }}$ lonization energy $\mathrm{kJ} \mathrm{mol}^{-1}$	494	736	577
$2^{\text {nd }}$ lonization energy $\mathrm{kJ} \mathrm{mol}^{-1}$	4560	1450	1820

(i) Identify and write the common names of the elements A, B, and C .
\qquad
\qquad
\qquad
(ii) Brifely explain the common trend of the first lionization energies of A, B and C .
\qquad
\qquad
\qquad
(iii) Write the electronic configuration of the element B
(iv) Draw the graph of successive lionization energies VS number of removing electrons of element A
(v) Give two uses of element C
(b) Derive the molecular shape of the following molecules
I. ClF_{3}
II. SF_{4}
(c) The following table give the information of melting point and electric conductance of the species $\mathrm{Mg}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CO}_{2}, \mathrm{NaCl}, \mathrm{SiO}_{2}$. Fill in the blank in the given table based on this details.

	Species	Melting point ${ }^{\circ} \mathrm{C}$	Electric conduefance	
			Solid state	Aqueous solution molten stage
I.	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	1610	Nill	Nill
II.	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.	649	Very good	Very good
III.	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	801	Very poor	good
IV.	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	-78	Nill	Nill
V.	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	2027	Very good	good

4) (a)

HCl
Answer the following based on the given acid bottle acid W/W 36.5\% $\mathrm{d}=1.17 \mathrm{gcm}^{-3}$
(i) What is the concentration of HCl acid in moldm $^{-3}(\mathrm{H}=1, \mathrm{Cl}=35.5)$
\qquad
\qquad
(ii) What is the IUPAC name of the above acid.
(iii) How can you prepare $5 \mathrm{moldm}^{-3} 250 \mathrm{~cm}^{3} \mathrm{HCl}$. acid solution from the above acid.
\qquad
\qquad
\qquad
\qquad
(iv) $2 \mathrm{moldm}^{-3} 100 \mathrm{~cm}^{3} \mathrm{HCl}$ solution is prepared from the stock solution of $5 \mathrm{moldm}^{-3} \mathrm{HCl}$. The prepared solution of 2 moldm ${ }^{-3}, 100 \mathrm{~cm}^{3} \mathrm{HCL}$ is allowed to completely react with $1 \mathrm{moldm}^{-3}, 100 \mathrm{~cm}^{3} \mathrm{NaOH}$ solution based on the stoichiometric ratio of the reaction
I. Resulting solution shows acidic / basic property (delete wrong statement)
II. Calculate the concentration of $\mathrm{H}_{(\mathrm{aq})}^{+}$, or $\mathrm{OH}_{(\mathrm{aq})}^{-}$lons in the resulting solution in moldm ${ }^{-3}$
(v) Write the balanced chemical equation of the reaction between concentrated HCl solution and KMnO_{4}
(B) The mole of acidify KMnO_{4} is which is change $2.68 \times 10^{-3} \mathrm{~mol} \mathrm{~A}^{\mathrm{n+}}$ to AO_{3}^{-}is $1.61 \times 10^{-3} \mathrm{~mol}$
(i) Give oxidation and reduction half ionic reaction to the above reaction
\qquad
\qquad
(ii) Write the balanced complete ionic equation.
\qquad
(iii) calculate the value for n.
\qquad
\qquad
\qquad

Part - II B

* Answer any two questions from this section.

1) (A) Give the Lewis structure and affroximated bond angle of the following moleales.
(i) POCl_{3}
(ii) $\mathrm{H}_{2} \mathrm{SO}_{3}$
(iii) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(B) Drive the molewlar structure of $\mathrm{C}_{2} \mathrm{H}_{4}$ using the knowledge of hybridization
(C) Draw the Lewis structure of $\mathrm{N}_{2} \mathrm{O}$, draw the resonone structures of $\mathrm{N}_{2} \mathrm{O}$ and mention their relative stabitity.
(D) Arrange the ascending order of electronegativity of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{3}^{2-}$ and SO_{4}^{2-}. Explain your Answer.
(E) Draw the formation of hydrogen bond of the following molecules.
(i) $\mathrm{HF}_{(\mathrm{l})}$
(ii) $\mathrm{CH}_{3} \mathrm{COOH}_{(1)}$
(iii) Between acetone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$ and $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ molecule.
2) (A) A mixture only contain $\mathrm{CaCO}_{3}, \mathrm{MgCO}_{3}$ and SiO_{2} mole ratio af $\mathrm{CaCO}_{3}: \mathrm{MgCO}_{3}$ is $1: 1$. When 2.00 g of this mixture is heated until the constant mass obtained and the mass of residue is 1.12 g . Calculate the mass percentage of each species $(\mathrm{Ca}=40, \mathrm{Mg}=24, \mathrm{Si}=28, \mathrm{O}=16)$ $\left(\mathrm{MCO}_{3(\mathrm{~s})} \rightarrow \mathrm{MO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}\right)$
(B) When heated 80.0 g of hydrated salt $\mathrm{MSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ give unhydrous sulfate and $3.75 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ as products. Calculate the value for $\mathrm{x} . \quad(\mathrm{M}=24)$
(C) Mass percentage of isotopes of carbon sample is given below.
${ }_{6}^{12} \mathrm{C}=98.89 \% \quad, \quad{ }_{6}^{13} \mathrm{C}=1.11 \%$ and mass percentage of ${ }_{6}^{14} \mathrm{C}$ is neglected. What is the relative atomic mass of natural carbon
(D) How can you prepare 2 moldm ${ }^{-3}, 250 \mathrm{~cm}^{3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.
(E) Fill in the blank of the following nuclear reaction.
I.

$$
{ }_{88}^{226} R a \rightarrow H e+{ }_{\square}^{222} R n
$$

II. $\quad{ }_{4}^{7} B e+\frac{\square}{\square \ldots}+$
 ${ }_{\square}^{7} L i$

3) (A) Derive the Lewis structure for the following molecules.
(i) SO_{3}
(ii) $\mathrm{H}_{2} \mathrm{~S}$
(iii) PH_{3}
(B) i) Write the most acceptable Lewis structure for NO_{3}^{-}ion.
ii) Draw the possible resonance structure for the above ion.
(C) calculate one mole photon energy of yellow light which has 589 nm wave length.
$\left(\mathrm{C}=3 \times 10^{8} \mathrm{~ms}^{-1}, \mathrm{~h}=6.626 \times 10 \mathrm{JsN}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)$
(D) An organic compound Y contain C, H and O only when Y was burn CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ were obtained in $2: 1$ mole ratio. Accurate relative molar mass of Y is 152 . The mass percentage of oxygen in Y is less then 40%. Find out the molecular formula of Y .

$$
(\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16)
$$

(E) Give the oxidation and, reduction reactions and write complete ionic equation for the following reaction.
i. Reaction between acidify $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\mathrm{H}_{2} \mathrm{~S}$
ii. Reaction between acidify KMnO_{4} and $\mathrm{FeC}_{2} \mathrm{O}_{4}$

