	தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் முதலாம் தவணைப் பரீட்சை - 2022 Conducted by Field Work Centre, Thondaimanaru. ^{FWC} 1 st Term Examination - 2022
	இரசாயனவியல் I One hour 02 E
	Chemistry I Gr -12 (2023)
	Part – I
*	Answer all questions.
1)	Which of the following combinations is correct.
	1. Cathode ray experiment - Pauli
	2. Gold foil experiment - J. J. Thomson
	 The number of positive charges on the nucleus increases in atom by single electron units
	4. Small particles under appropriate conditions show wave properties - Max plank
	5. Positive ray experiment - Dalton
2)	Maximum number of electrons possible to have for the quantum number $n = 3$ and $m_s = -\frac{1}{2}$ is,
	1. 3 2. 4 3. 5 4. 7 5. 9
	adaram Ik
3)	The correct increasing order of ionic radius is O^{2-} , N^{3-} , I^- , K^+ , Ca^{2+}
	1. $Ca^{2+} < K^+ < 0^{2-} < N^{3-} < I^-$ 2. $K^+ < Ca^{2+} < 0^{2-} < N^{3-} < I^-$
	3. $Ca^{2+} < K^+ < I^- < O^{2-} < N^{3-}$ 4. $Ca^{2+} < K^+ < O^{2-} < I^- < N^{3-}$
	5. $K^+ < Ca^{2+} < 0^{2-} < I^- < N^{3-}$
4)	The density of an aqueous basic solution at 25° C is 2 kgdm^{-3} . If the OH ⁻ concentration is 0.05 moldm ⁻³ its OH ⁻ concentration in ppm would be, [H – 1, O – 16]
	1. 520 2. 340 3. 425 4. 850 5. 85
5)	Which is the correct decreasing order of electron negativity of nitrogen of the following NO ₂ Cl , NOCl, CF_3NC , NH_3 , NH_4^+ . 1. $CF_3NC > NO_2Cl > NH_4^+ > NOCl > NH_3$ 2. $CF_3NC > NO_2Cl > NOCl > NH_4^+ > NH_3$ 3. $NH_4^+ > NO_2Cl > NH_2 > CF_2NC$ 4. $NH_2 > NH_4^+ > NOCl > NO_2Cl > NO_2Cl > CF_2NC$
	5. $\mathrm{NH}_{4}^{+} > \mathrm{CF}_{2}\mathrm{NC} > \mathrm{NO}_{2}\mathrm{Cl} > \mathrm{NO}\mathrm{Cl} > \mathrm{NH}_{2}$

Agaram.LK - Keep your dreams alive!

6) 5 mol of N₂ gas and 9 mol of H₂ gas were mixed in a sealed container and allowed to react certain temperature. What is the diagram showing the changing mole of the NH₃ gas that forms with the reaction mole of N₂ gas?

Agaram.LK - Keep your dreams alive!

- 12) The correct answer when the molecules N₂, NH₃, NH₂OH, NO, NO₂, and HNO₃ are arranged in the decreasing order of the oxidation state of nitrogen (N) is,
 - 1. $HNO_3 > NO_2 > NO > N_2 > NH_3 > NH_2OH$ 2. $NO_2 > HNO_3 > NO > N_2 > NH_3 > NH_2OH$
 - 3. $NH_2OH > NH_3 > N_2 > NO > NO_2 > HNO_3$ 4. $NH_3 > NH_2OH > N_2 > NO > NO_2 > HNO_3$
 - 5. $HNO_3 > NO_2 > NO > N_2 > NH_2OH > NH_3$

13) Identify the correct statement from the following

- 1. Among the electronic transitions $n = 2 \rightarrow n = 1$, $n = \infty \rightarrow n = 2$ and $n = 6 \rightarrow n = 1$ in a hydrogen atom most energy is release in $n = \infty \rightarrow n = 2$.
- 2. The only type of inter molecular force present in CO_2 in the solid phase is dipole dipole forces
- 3. The shape of the HNO_3 is trigonal bipyramidal

2. $\frac{3}{5}$

- 4. The O N O bond angle of NO_2 is greater than that of NO_2^- .
- 5. The addition of an electron to a gaseous berilium (Be) atom is an exothermic process whereas for a gaseous nitrogen atom it is endothermic
- 14) The number of moles of $KMnO_4$ that are required to react completely with one mole of FeI_2 in acidic medium is,

4. 1

1. $\frac{2}{5}$

Agaram.LK - Keep your dreams alive!

3. $\frac{1}{5}$

- 5. $\frac{4}{5}$
- 15) Select the correct statement with regard to particles associated with positive rays observed in a cathode ray tube
 - 1. The particles are uncharged.
 - 2. They travel from cathode to anode along straight lines
 - 3. Their charge to mass ratio e / m depends on the nature of gas inside the cathode ray tube.
 - 4. Their direction of travel is not affected by magnetic and electric fields
 - 5. They are not capable of ionizing the gas inside the cathode ray tube
- For each of the question 16 to 20 one or more response out of four responses (a), (b), (c) and (d) given is / are correct. Select the correct response / responses. In accordance with the instruction given on your answer sheet mark.

1	2	3	4	5
Only (a) (b)	Only (b) (c) are	Only (c) (d) are	Only (a) (d) are	The other numbers
are correct	correct	correct	correct	correct

- 16) Which of the following statements is / are correct
 - a) In a molecule if one atom is SP hybridized It will definitely have π bond.
 - b) Concept of hybridization is applied to only one atom.
 - c) The number of atomic orbitals that participate in the hybridization
 - d) Hybrid orbitals have clear identify
- 17) Which of the following statements is / are **incorrect**?
 - a) Hydrogen bond is formed only when there are H F, H O, H N bonds in a molecule
 - b) Oxidation number of oxygen in OF_2 is +2
 - c) electromagnetic radiations are not affected by electric fields.
 - d) When the momentum of a matter increases it's wave length also increases.

18) Which of the following statements is / are true regarding the molecule given below?

$$H_2 \underset{P}{C} = \underset{Q}{C} H - \underset{R}{C} H_2 - \underset{S}{C} \equiv \underset{T}{C} - H$$

- a) Atoms labelled Q, R, S and T lie on a straight line.
- b) All carbon atoms lie in the same plane.
- c) Between C_S and C_T there is one σ bond and two π bonds.
- d) The angle between $C_P-\ C_Q$ and C_Q-H bonds is approximately $120^0.$

19) 18 g $C_6H_{12}O_6$ was dissolved in 180 cm^3 of water which of the following statement / s is / are. correct regarding the above procedure. [water density is $1 gcm^{-3}$] C - 12, H - 1, O - 16

- a) Molar concentration of $C_6H_{12}O_6$ in solution is 0.1 moldm⁻³
- b) Mass fraction of $C_6H_{12}O_6$ in solution is 0.091
- c) Mole fraction of $C_6H_{12}O_6$ in solution is $\frac{1}{101}$
- d) Percentage by mass of $C_6H_{12}O_6$ in solution is 91%

20) Which of the following statement / s is / are true?

- a) Electrons have particle as well as wave properties.
- b) A proton is heavier than a neutron
- c) All atoms have electrons, protons and neutrons
- d) All ions have at least one proton.

• Instructions for questions 21 - 25.

Response	First statement	Second statement
1)	True	True and correctly explains the first statement.
2)	True	True, but not explain the first statement correctly
3)	True	False
4)	False	True
5)	False	False

	Statement I	Statement II
21)	$SrCO_3$ is more thermally stable than Li_2CO_3	Polarizing power of group two cations
		decreases down the group
22)	Although the electro negativities of O > C	In general, when S character of a hybrid
	according to pauling's scale, the electro negativity	orbital and the oxidation number of an
	of C in CO_2 is greater than that of O in H ₂ O	atom increase, electro negativity will
		increase.
23)	Both methanol [CH ₃ OH] and KI readily dissolve in	H_2O forms strong hydrogen bonds with
	H ₂ 0	both methanol and KI.
24)	SCl_4 and CCl_4 are both tetrahedral	Molecules that have the same number of
		atoms generally have the same shape.
25)	$SO_2 + 2H_2S \rightarrow 3S + 2H_2O$ at this reaction is	A chemical species (element) undergoing
	example for disproportionation.	oxidation and reduction at the same time is
		called disproportionation.

www.agaram.lk

_agaram.lk

Chemistry - I

FWC	໑	தாண்டைமானாறு வெளிக்கள நிலையம் முதலாம் தவணைப் பரீட்சை - 2022 Conducted by Field Work Centre, Thondai 1 st Term Examination - 2022	நடாத்தும் manaru.
இரசா	யனவிய	ມວ່ II A Two Hours ten minutes	
Chem	nistry	II A Gr -12 (2023)	
1) (2)	To the	Structure essay Questions Answer all questions	
1) (a)	(i)	Among there elements F, Cl, Br, Which on has the highest	
		electron gain enthalpy in ($kJmol^{-1}$)	
	(ii)	Among the molecules XeF_2 , XeF_4 and XeO_3 which on has the highest bond angle.	
	(iii)	Among O, Cl, and P Which one has the lowerst first ionization energy	
	(iv)	Among $MgCO_3$, $CaCO_3$ and $SrCO_3$ which one has the lowerst polarization ability	
	(v)	Among $HClO_4$, Cl_2O_3 and Cl_2O which one has the highest oxidation state in Cl atom	
	(vi)	Among SF_6 , CCl_4 , BCl_3 which compound has the highest eleotron pair repulsion units in central atom	

(b)(i) Draw the most acceptable Lewis structure for the molecular skeleton given below $\ .$

$$\begin{matrix} O \\ I \\ CH_3 - C - N - N - N \end{matrix}$$

Agaram.LK - Keep your dreams alive!

- (ii) Write the possible three resonance structures for the above molecule and state the relative stability of that resonance structures (Except given in b(i))
- (iii) Complete the given table based on the Lewis dot dash structure and its labeled molecule given below.

		01	N ²	C ³	C ⁵
I.	VSEPR Pairs				
II.	Electron pair geometry.				
III.	Molecular shape				
IV.	Hybridization				

(iv) Identify the atomic / hybride orbitals involved in the formation of σ bond in the above Lewis dot dash structure

I. $0^1 - N^2$	0 ¹	N ²
II. $N^2 - C^3$	N ²	C ³
III. $C^3 - C^5$	C ³	C ⁵
IV. $C^5 - Cl^6$	C ⁵	Cl ⁶

(v) Identify the atomic orbitals in the formation of the π bond in the Lewis dot – dash structure give in part (iii) above $C^3 - C^4$ C^3 C^4

(c)(i) Complete the following table.

		Species	Primary interaction	Secondary interaction
(1)	$CH_{4(g)}$		
(2)	NaCl _(s)		
(3)	Mg		
((4)	C (Diamond)		
(5)	$CH_3OH_{(aq)}$		

www.agaram.lk

(ii)	Mention the affroximate bond angle of the central atom in the following molecules.
	1. $XeF_4 := 2. PCl_5 := SO_2 :=$
2) (a)	An inorganic salt contain Cr, S, and O only. Cr 26.52%, S 24.53 %, O 48. 96 % are the mass
	percentage of the elements Cr, S and O respectively.
	(Cr = 52, S = 32, O = 16)
(i)	Write the empirical formula of the salt X ?
/···	
(11)	Write the chemical formula of the salt X.
(iii)	Write the IUPAC Names of the following compounds
(111)	1 U.C.
	1. H ₂ S
	2. HClO ₄
	3. KH ₂ PO ₄
	4. Fe ₂ S ₃
(b) (i)	Write oxidation and reduction half ionic reaction and then write complete ionic – equation for the
	reaction $Fe_{(aq)}^{2+} + NO_{3(aq)}^{-} + H_2O \rightarrow Fe_{(aq)}^{3+} + NO_{(g)} + OH^-$ in basic medium.
(ii)	$S_{(s)} + HNO_{3(aq)} \rightarrow H_2SO_{4(aq)} + NO_{2(g)} + H_2O_{(l)}$ Balance this reaction by oxidation number
	method.

(iii) ($\mathcal{C}_{3}II_{8}(g) + \mathcal{C}_{2}(g) \rightarrow \mathcal{C}\mathcal{C}_{2}(g) + II_{2}\mathcal{O}(l)$					
				•••••		
				• • • • • • • • • • • • • • • • • • • •		
					• • • • • •	
				• • • • • • • • • • • • • • • • • • • •	• • • • • •	
					• • • • • •	
(c)	A solution contain acidic $KMnO_4$ Volume of that is 100 cm^3 . 0.1 moldm^{-3} 50 cm^3 H_2O_2 solution was added to it and shaken well. After that 0.1 moldm^{-3} 50 cm^3 Na ₂ SO ₂ solution was					
	needed to completely react with remain	ning KMnO ₄ solutio	on			
(i)	Write balance chemical reactions for th	ne above reactions.				
(ii)	What is the concentration of $KMnO_4$	in the solution?				
	•••••••••••••••••••••••••••••••••••••••				• • • • • •	
(a)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization	nts belongs to period ing point of this ele on emergies are give	dic table, Which a ements as follows n in the following	atomic numbers A < B < C. C g table. Consider	are loomm	
(a)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions.	nts belongs to period ing point of this ele on emergies are give	dic table, Which a ements as follows n in the following	atomic numbers A < B < C. C g table. Consider	are loomm	
(a)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions.	nts belongs to period ing point of this ele on emergies are give A	dic table, Which a ements as follows n in the following	atomic numbers A < B < C. C g table. Consider C 577	are loomm	
(a)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions. Element 1 st lonization energy kJ mol ⁻¹	nts belongs to period ing point of this ele on emergies are give A 494	dic table, Which a ements as follows n in the following B 736	atomic numbers A < B < C. C g table. Consider C 577 1820	are le omm	
(a)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹	nts belongs to period ing point of this ele on emergies are give A 494 4560	dic table, Which a ements as follows n in the following B 736 1450	atomic numbers A < B < C. C g table. Consider C 577 1820	are loomm	
(a) (i)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of	nts belongs to period ing point of this ele on emergies are give A 494 4560 of the elements A, H	dic table, Which a ements as follows n in the following B 736 1450 3, and C.	atomic numbers A < B < C. C g table. Consider C 577 1820	are loomm	
(a) (i)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of	nts belongs to period ing point of this ele on emergies are give A 494 4560 of the elements A, H	dic table, Which a ements as follows n in the following B 736 1450 3, and C.	atomic numbers A < B < C. C g table. Consider C 577 1820	are loomm	
(a) (i)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of	nts belongs to period ing point of this ele on emergies are give A 494 4560 of the elements A, H	dic table, Which a ements as follows n in the following B 736 1450 3, and C.	atomic numbers A < B < C. C g table. Consider C 577 1820	are loomm	
(a) (i)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of	nts belongs to period ing point of this ele on emergies are give A 494 4560 of the elements A, H	dic table, Which a ements as follows n in the following B 736 1450 3, and C.	atomic numbers A < B < C. C g table. Consider C 577 1820	are loomm	
(a) (i)	A,B and C are three successive element than 20. Ascending order of the boili variation of first and second lionizatio answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of	nts belongs to period ing point of this ele on emergies are give A 494 4560 of the elements A, H	dic table, Which a ements as follows n in the following B 736 1450 3, and C.	atomic numbers A < B < C. C g table. Consider C 577 1820	are loomm	
(a) (i)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of Brifely explain the common trend of the	nts belongs to period ing point of this ele on emergies are give A 494 4560 of the elements A, F the first lionization e	dic table, Which a ements as follows n in the following B 736 1450 3, and C. energies of A, B ar	atomic numbers A < B < C. C g table. Consider C 577 1820 nd C.	are loomm	
(a) (i)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of Brifely explain the common trend of the second	nts belongs to period ing point of this ele on emergies are give A 494 4560 of the elements A, F the first lionization e	dic table, Which a ements as follows n in the following B 736 1450 3, and C. energies of A, B ar	atomic numbers A < B < C. C g table. Consider C 577 1820 nd C.	are loomm	
(a) (i)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of Brifely explain the common trend of the second	nts belongs to period ing point of this ele on emergies are give A 494 4560 of the elements A, H the first lionization e	dic table, Which a ements as follows n in the following B 736 1450 3, and C.	atomic numbers A < B < C. C g table. Consider C 577 1820 nd C.	are loomm	
(a) (i)	A,B and C are three successive element than 20. Ascending order of the boili variation of first and second lionizatio answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of Brifely explain the common trend of the	nts belongs to period ing point of this ele on emergies are give A 494 4560 of the elements A, F the first lionization e	dic table, Which a ements as follows n in the following B 736 1450 3, and C.	atomic numbers A < B < C. C g table. Consider C 577 1820	are loomm	
(a) (i)	A,B and C are three successive element than 20. Ascending order of the boili variation of first and second lionizatio answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of Brifely explain the common trend of the second sec	nts belongs to period ing point of this ele on emergies are give A 494 4560 of the elements A, H	dic table, Which a ements as follows n in the following B 736 1450 3, and C.	atomic numbers A < B < C. C g table. Consider C 577 1820 nd C.	are loomm	
(a) (i) (ii)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of Brifely explain the common trend of the Write the electronic configuration of the	nts belongs to period ing point of this ele- on emergies are give A 494 4560 of the elements A, H the first lionization e	dic table, Which a ements as follows n in the following B 736 1450 B, and C.	atomic numbers A < B < C. C g table. Consider C 577 1820 nd C.	are loomm	
(a) (i) (ii) (iii)	A,B and C are three successive element than 20. Ascending order of the boiling variation of first and second lionization answer the following questions. Element 1 st lonization energy kJ mol ⁻¹ 2 nd lonization energy kJ mol ⁻¹ Identify and write the common names of Brifely explain the common trend of the Write the electronic configuration of the	nts belongs to period ing point of this electon emergies are give A 494 4560 of the elements A, H the first lionization e the element B	dic table, Which a ements as follows n in the following B 736 1450 3, and C.	atomic numbers A < B < C. C g table. Consider C 577 1820	are loomm	

Grade - 12(2023) 1st term – 2022 F.W.C

Agaram.LK - Keep your dreams alive!

🧸 agaram.lk

(iv	v) Drav	w the graph of successiv	e lionization energies	SVS number of rem	oving electrons of element A
(v) Give	e two uses of element C			
(b)	Derive	e the molecular shape of	the following molecu	les	
	I.	ClF ₃	I	I. SF ₄	
					/
(c)	The fo	ollowing table give the	information of meltin	ng point and electr	ric conductance of the species
	Mg, A	l_2O_3 , CO_2 , NaCl , SiO ₂ . F	ill in the blank in the	given table based o	n this details.
				Elec	tric conduefance
		Species	Melting point °C	Solid state	Aqueous solution molten
					stage
	I.	•••••	1610	Nill	Nill
	II.		649	Very good	Very good
	III.		801	Very poor	good
	IV.		- 78	Nill	Nill

V.

Agaram.LK - Keep your dreams alive!

_agaram.lk

2027

Very good

good

www.agaram.lk

(a)
HCl acid W/W 36.5% d = 1.17 gcm ⁻³ Answer the following based on the given acid bottle
(i) What is the concentration of HCl acid in moldm ⁻³ (H = 1, Cl = 35.5)
(ii)What is the IUPAC name of the above acid.
(iii) How can you prepare 5 moldm ^{-3} 250 cm ^{3} HCl. acid solution from the above acid.
 prepared solution of 2 moldm⁻³, 100 cm³ HCL is allowed to completely react with 1 moldm⁻³, 100 cm³ NaOH solution based on the stoichiometric ratio of the reaction I. Resulting solution shows acidic / basic property (delete wrong statement) II. Calculate the concentration of H⁺_(aq), or OH⁻_(aq) lons in the resulting solution in moldm⁻³ (v) Write the balanced chemical equation of the reaction between concentrated HCl solution and KMnO₄
(B) The mole of acidify $KMnO_4$ is which is change 2.68 x 10^{-3} mol A^{n+} to AO_3^- is 1.61 x 10^{-3} mol (i) Give oxidation and reduction half ionic reaction to the above reaction
(ii) Write the balanced complete ionic equation.
(iii) calculate the value for n.

II.
$${}^{7}_{4}Be + \Box \Box + {}^{7}_{-}Li$$

- 03) (A) Derive the Lewis structure for the following molecules.
 (i) SO₃ (ii) H₂S (iii) PH₃
 - (B) i) Write the most acceptable Lewis structure for NO₃⁻ ion.ii) Draw the possible resonance structure for the above ion.
 - (C) calculate one mole photon energy of yellow light which has 589 nm wave length. $(C = 3 \times 10^8 ms^{-1}$, h= 6.626 x 10JsN_A = 6.022 x 10²³mol⁻¹)
 - (D) An organic compound Y contain C, H and O only when Y was burn CO₂ and H₂O were obtained in 2 : 1 mole ratio. Accurate relative molar mass of Y is 152. The mass percentage of oxygen in Y is less then 40 %. Find out the molecular formula of Y.
 (C = 12, H = 1, O = 16)
 - (E) Give the oxidation and, reduction reactions and write complete ionic equation for the following reaction.
 - i. Reaction between acidify $K_2Cr_2O_7$ and H_2S
 - ii. Reaction between acidify $KMnO_4$ and FeC_2O_4